Home » Publications

Publications

Martins, V. E., Cano, A., & Junior, S. B. (2023). Meta-learning for dynamic tuning of Active Learning on Stream Classification. Pattern Recognition, 109359.
Tavares, G. M., Barbon Junior, S., Damiani, E., & Ceravolo, P. (2022, November). Selecting Optimal Trace Clustering Pipelines with Meta-learning. In Intelligent Systems: 11th Brazilian Conference, BRACIS 2022, Campinas, Brazil, November 28–December 1, 2022, Proceedings, Part I (pp. 150-164). Cham: Springer International Publishing.
Tavares, G. M., Junior, S. B., & Damiani, E. (2022, September). Automating Process Discovery Through Meta-learning. In Cooperative Information Systems: 28th International Conference, CoopIS 2022, Bozen-Bolzano, Italy, October 4–7, 2022, Proceedings (pp. 205-222). Cham: Springer International Publishing.
Oyamada, R. S., Shimomura, L. C., Barbon Jr, S., & Kaster, D. S. (2023). A meta-learning configuration framework for graph-based similarity search indexes. Information Systems, 112, 102123.
Lopes, J. F., da Costa, V. G. T., Barbin, D. F., Cruz-Tirado, L. J. P., Baeten, V., & Barbon Junior, S. (2022). Deep computer vision system for cocoa classification. Multimedia Tools and Applications, 81(28), 41059-41077.
Alberghini, G., Junior, S. B., & Cano, A. (2022). Adaptive ensemble of self-adjusting nearest neighbor subspaces for multi-label drifting data streams. Neurocomputing, 481, 228-248.
Nakagawa, F. H., Junior, S. B., & Zarpelao, B. B. (2021, November). Attack Detection in Smart Home IoT Networks using CluStream and Page-Hinkley Test. In 2021 IEEE Latin-American Conference on Communications (LATINCOM) (pp. 1-6). IEEE.
Barbon Junior, S., Pinto, A., Barroso, J. V., Caetano, F. G., Moura, F. A., Cunha, S. A., & Torres, R. D. S. (2022). Sport action mining: Dribbling recognition in soccer. Multimedia Tools and Applications, 81(3), 4341-4364.
Caetano, F. G., Barbon Junior, S., Torres, R. D. S., Cunha, S. A., Ruffino, P. R. C., Martins, L. E. B., & Moura, F. A. (2021). Football player dominant region determined by a novel model based on instantaneous kinematics variables. Scientific Reports, 11(1), 18209.
Scaranti, G. F., Carvalho, L. F., Junior, S. B., Lloret, J., & Proença Jr, M. L. (2022). Unsupervised online anomaly detection in Software Defined Network environments. Expert Systems with Applications, 191, 116225.
Aguiar, G. J., Santana, E. J., de Carvalho, A. C., & Junior, S. B. (2022). Using meta-learning for multi-target regression. Information Sciences, 584, 665-684.
Silva, R. P., Zarpelão, B. B., Cano, A., & Junior, S. B. (2021). Time series segmentation based on stationarity analysis to improve new samples prediction. Sensors, 21(21), 7333.
Santana, E. J., Silva, R. P., Zarpelão, B. B., & Barbon Junior, S. (2021). Detecting and mitigating adversarial examples in regression tasks: a photovoltaic power generation forecasting case study. Information, 12(10), 394.
Abonizio, H. Q., Paraiso, E. C., & Barbon, S. (2021). Toward text data augmentation for sentiment analysis. IEEE Transactions on Artificial Intelligence, 3(5), 657-668.
Barbon Jr, S., Ceravolo, P., Damiani, E., & Tavares, G. M. (2021). Selecting optimal trace clustering pipelines with automl. arXiv preprint arXiv:2109.00635.
Tavares, G. M., & Junior, S. B. (2021, July). Process Mining Encoding via Meta-learning for an Enhanced Anomaly Detection. In New Trends in Database and Information Systems: ADBIS 2021 Short Papers, Doctoral Consortium and Workshops: DOING, SIMPDA, MADEISD, MegaData, CAoNS, Tartu, Estonia, August 24-26, 2021, Proceedings (pp. 157-168). Cham: Springer International Publishing.
Peres, L. M., Junior, S. B., Lopes, J. F., Fuzyi, E. M., Barbon, A. P., Armangue, J. G., & Bridi, A. M. (2021). Meta-recommendation of pork technological quality standards. Biosystems Engineering, 210, 13-19.
Azzini, A., Barbon Jr, S., Bellandi, V., Catarci, T., Ceravolo, P., Cudré-Mauroux, P., … & Wrembel, R. (2021). Advances in data management in the big data era. In Advancing Research in Information and Communication Technology: IFIP’s Exciting First 60+ Years, Views from the Technical Committees and Working Groups (pp. 99-126). Cham: Springer International Publishing.
Vertuam Neto, R., Tavares, G., Ceravolo, P., & Barbon, S. (2021, June). On the use of online clustering for anomaly detection in trace streams. In XVII Brazilian Symposium on Information Systems (pp. 1-8).
Barbon Jr, S., Ceravolo, P., Damiani, E., & Tavares, G. M. (2021). Using Meta-learning to recommend process discovery methods. arXiv preprint arXiv:2103.12874.
Zarpelão, B. B., Junior, S. B., Badaró, A. T., & Barbin, D. F. (2021). On the use of blockchain for agrifood traceability. In Food Authentication and Traceability (pp. 279-302). Academic Press.
Barbon Junior, S., Ceravolo, P., Damiani, E., & Marques Tavares, G. (2021). Evaluating trace encoding methods in process mining. In From Data to Models and Back: 9th International Symposium, DataMod 2020, Virtual Event, October 20, 2020, Revised Selected Papers 9 (pp. 174-189). Springer International Publishing.
Oliveira, M. M., Cerqueira, B. V., Barbon Jr, S., & Barbin, D. F. (2021). Classification of fermented cocoa beans (cut test) using computer vision. Journal of Food Composition and Analysis, 97, 103771.
Mastelini, S. M., Santana, E. J., Cerri, R., & Barbon Jr, S. (2020). DSTARS: A multi-target deep structure for tracking asynchronous regressor stacking. Applied Soft Computing, 91, 106215.
Junior, S. B., Ceravolo, P., Damiani, E., Omori, N. J., & Tavares, G. M. (2020, October). Anomaly detection on event logs with a scarcity of labels. In 2020 2nd International Conference on Process Mining (ICPM) (pp. 161-168). IEEE.
Martins, V. E., da Costa, V. G. T., & Barbon Junior, S. (2020, October). Active learning embedded in incremental decision trees. In Intelligent Systems: 9th Brazilian Conference, BRACIS 2020, Rio Grande, Brazil, October 20–23, 2020, Proceedings, Part II (pp. 367-381). Cham: Springer International Publishing.
Santana, E. J., Silva, R. P., Zarpelão, B. B., & Barbon Junior, S. (2020, October). Photovoltaic generation forecast: model training and adversarial attack aspects. In Intelligent Systems: 9th Brazilian Conference, BRACIS 2020, Rio Grande, Brazil, October 20–23, 2020, Proceedings, Part II (pp. 634-649). Cham: Springer International Publishing.
Queiroz Abonizio, H., & Barbon Junior, S. (2020, October). Pre-trained data augmentation for text classification. In Intelligent Systems: 9th Brazilian Conference, BRACIS 2020, Rio Grande, Brazil, October 20–23, 2020, Proceedings, Part I (pp. 551-565). Cham: Springer International Publishing.
Junior, S. B., Santana, E. J., Badaró, A. T., Borrás, N. A., & Barbin, D. F. (2020). Advantages of Multi-Target Modelling for Spectral Regression. Spectroscopic Techniques & Artificial Intelligence for Food and Beverage Analysis, 95-121.
Oyamada, R. S., Shimomura, L. C., Junior, S. B., & Kaster, D. S. (2020, August). Towards proximity graph auto-configuration: An approach based on meta-learning. In Advances in Databases and Information Systems: 24th European Conference, ADBIS 2020, Lyon, France, August 25–27, 2020, Proceedings (pp. 93-107). Cham: Springer International Publishing.
Tavares, G. M., & Barbon, S. (2020). Analysis of language inspired trace representation for anomaly detection. In ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral Consortium: International Workshops: DOING, MADEISD, SKG, BBIGAP, SIMPDA, AIMinScience 2020 and Doctoral Consortium, Lyon, France, August 25–27, 2020, Proceedings 24 (pp. 296-308). Springer International Publishing.
Mantovani, R. G., Rossi, A. L. D., Alcobaça, E., Gertrudes, J. C., Junior, S. B., & de Carvalho, A. C. P. D. L. F. (2020). Rethinking default values: a low cost and efficient strategy to define hyperparameters. arXiv preprint arXiv:2008.00025.
Ceravolo, P., Tavares, G. M., Junior, S. B., & Damiani, E. (2020). Evaluation goals for online process mining: a concept drift perspective. IEEE Transactions on Services Computing, 15(4), 2473-2489.
Jashchenko Omori, N., Marques Tavares, G., Ceravolo, P., & Barbon, S. (2020). Comparing concept drift detection with process mining software. ISYS, 13(4), 101-125.
de Morais, J. I., Abonizio, H. Q., Tavares, G. M., da Fonseca, A. A., & Barbon Jr, S. (2020). A multi-label classification system to distinguish among fake, satirical, objective and legitimate news in brazilian portuguese. iSys-Brazilian Journal of Information Systems, 13(4), 126-149.
Leão, A. L. F., Abonizio, H. Q., Júnior, S. B., & Kanashiro, M. (2020). Identificação de composições da paisagem urbana: uma abordagem de deep learning. Revista de Morfologia Urbana, 8(1), e00140-e00140.
Zarpelão, B. B., Barbon, S., Acarali, D., & Rajarajan, M. (2020). How Machine Learning Can Support Cyberattack Detection in Smart Grids. Artificial Intelligence Techniques for a Scalable Energy Transition: Advanced Methods, Digital Technologies, Decision Support Tools, and Applications, 225-258.
Scaranti, G. F., Carvalho, L. F., Barbon, S., & Proença, M. L. (2020). Artificial immune systems and fuzzy logic to detect flooding attacks in software-defined networks. IEEE Access, 8, 100172-100184.
Abonizio, Hugo Queiroz, et al. “Language-independent fake news detection: English, Portuguese, and Spanish mutual features.” Future Internet 12.5 (2020): 87.
Lopes, J, Santana, E, Costa, V, Zarpelão, B, Barbon, S. “Evaluating the Four-way Performance Trade-off for Data Stream Classification in Edge Computing”. IEEE Transactions on Network and Service Management 2020.
Campos, G, Seixas Jr, J, Barbon, A, Felinto, A, Bridi, A, Barbon Jr, S. “Robust computer vision system for marbling meat segmentation”. ELCVIA Electronic Letters on Computer Vision and Image Analysis 2020; 19(1):15–27.
Mastelini, S, Santana, E, Cerri, R, Barbon Jr, S. “DSTARS: A multi-target deep structure for tracking asynchronous regressor stacking”. Applied Soft Computing 2020:106215.
Santana, E, Santos, F, Mastelini, S, Melquiades, F, Barbon Jr, S. “Improved prediction of soil properties with Multi-target Stacked Generalisation on EDXRF spectra”. arXiv preprint arXiv:2002.04312 2020.
Lopes, J, Barbon, A, Orlandi, G, Calvini, R, Fiego, D, Ulrici, A, Barbon Jr, S. “Dual Stage Image Analysis for a complex pattern classification task: Ham veining defect detection”. Biosystems Engineering 2020; 191:129–144.
Martiello Mastelini, S, Barbon Jr, S, Carvalho, A. “Online Multi-target regression trees with stacked leaf models”. arXiv preprint arXiv:1903.12483 2019.
Silva, J, Santana, E, Mastelini, S, Barbon Jr, SPredi\cc\~ao de Portf\’olio de A\cc\~oes por Suporte \`a Decis\~ao Multi-Target. In Anais do XIV Simp\’osio Brasileiro de Sistemas de Informa\cc\~ao 2018 (pp. 269–262).
Tavares, G, Costa, V, Martins, V, Ceravolo, P, Barbon Jr, SDetec\cc\~ao de anomalia no processo de neg\’ocios com base na minera\cc\~ao do fluxo de dados. In Anais do XIV Simp\’osio Brasileiro de Sistemas de Informa\cc\~ao 2018 (pp. 127–120).
Douglas, F, Saulo, M, Gabriel, F, Ana Paula, A, others. “Digital Image Analyses As An Alternative Tool For Chicken Quality Assessment”. Biosystems Engineering 2016.
Fantinato, P, Guido, R, Chen, SH, Santos, B, Vieira, L, J\’unior, S, Rodrigues, L, Sanchez, FJoao Paulo Lemos Escola, Leonardo Mendes Souza, Carlos Dias Maciel, Paulo Rogério Scalassara, José Carlos Pereira, A Fractal-Based Approach for Speech Segmentation. In Proceedings of the 2008 Tenth IEEE International Symposium on Multimedia 2008 (pp. 551–555).
Aguiar, G, Mantovani, R, Mastelini, S, Carvalho, A, Campos, G, Junior, S. “A meta-learning approach for selecting image segmentation algorithm”. Pattern Recognition Letters 2019; 128:480–487.
Tavares, G, Ceravolo, P, Da Costa, V, Damiani, E, Junior, SOverlapping Analytic Stages in Online Process Mining. In 2019 IEEE International Conference on Services Computing (SCC) 2019 (pp. 167–175).
Fonseca, E, Guido, R, Junior, S, Dezani, H, Gati, R, Pereira, D. “Acoustic investigation of speech pathologies based on the discriminative paraconsistent machine (DPM)”. Biomedical Signal Processing and Control 2020; 55:101615.
Morais, J, Abonizio, H, Tavares, G, Fonseca, A, Barbon Jr, SDeciding among Fake, Satirical, Objective and Legitimate news: A multi-label classification system. In Proceedings of the XV Brazilian Symposium on Information Systems 2019 (pp. 1–8).
Omori, N, Tavares, G, Ceravolo, P, Barbon Jr, SComparing Concept Drift Detection with Process Mining Tools. In Proceedings of the XV Brazilian Symposium on Information Systems 2019 (pp. 1–8).
Prece, B, Pacheco, E, Barros, R, Barbon Jr, SImprovements on diagnostic assessment questionnaires of Maturity Level Management with feature selection. In Proceedings of the XV Brazilian Symposium on Information Systems 2019 (pp. 1–8).
Aguiar, G, Santana, E, Mastelini, S, Mantovani, R, J\’unior, STowards meta-learning for multi-target regression problems. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS) 2019 (pp. 377–382).
Bezerra, V, Costa, V, Barbon Junior, S, Miani, R, Zarpel\~ao, B. “IoTDS: A One-Class Classification Approach to Detect Botnets in Internet of Things Devices”. Sensors 2019; 19(14):3188.
Costa, V, Mastelini, S, Leon Ferreira, A, Barbon, S, othersOnline Local Boosting: improving performance in online decision trees. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS) 2019 (pp. 132–137).
Tavares, G, Costa, V, Martins, V, Ceravolo, P, Barbon Jr, S. “Leveraging Anomaly Detection in Business Process with Data Stream Mining”. iSys-Revista Brasileira de Sistemas de Informa\cc\~ao 2019; 12(1):54–75.
Basantia, N, Nollet, L, Kamruzzaman, M. Hyperspectral Imaging Analysis and Applications for Food Quality. CRC Press; 2018.
Costa, V, Santana, E, Lopes, J, Barbon, SEvaluating the Four-Way Performance Trade-Off for Stream Classification. In International Conference on Green, Pervasive, and Cloud Computing 2019 (pp. 3–17).
Kato, T, Mastelini, S, Campos, G, Costa Barbon, A, Prudencio, S, Shimokomaki, M, Soares, A, Barbon Jr, S. “White striping degree assessment using computer vision system and consumer acceptance test”. Asian-Australasian Journal of Animal Sciences 2019; 32(7):1015.
Junior, S, Mastelini, S, Barbon, A, Barbin, D, Calvini, R, Lopes, J, Ulrici, A. “Multi-target Prediction of wheat flour quality parameters with near infrared spectroscopy”. Information Processing in Agriculture 2019.
Lopes, J, Ludwig, L, Barbin, D, Grossmann, M, Barbon, S. “Computer Vision Classification of Barley Flour Based on Spatial Pyramid Partition Ensemble”. Sensors 2019; 19(13):2953.
Costa, V, Barbon, S, Miani, R, Rodrigues, J, Zarpel\~ao, B. “Mobile botnets detection based on machine learning over system calls”. International Journal of Security and Networks 2019; 14(2):103–118.
Costa, V, Santana, E, Lopes, J, Barbon, SEvaluating the Four-Way Performance Trade-Off for Stream Classification. In International Conference on Green, Pervasive, and Cloud Computing 2019 (pp. 3–17).
Nolasco-Perez, I, Rocco, L, Cruz-Tirado, J, Pollonio, M, Barbon, S, Barbon, A, Barbin, D. “Comparison of rapid techniques for classification of ground meat”. Biosystems Engineering 2019; 183:151–159.
Campos, G, Mastelini, S, Aguiar, G, Mantovani, R, Melo, L, Barbon, S. “Machine learning hyperparameter selection for Contrast Limited Adaptive Histogram Equalization”. EURASIP Journal on Image and Video Processing 2019; 2019(1):59.
Kido, G, Junior, S, Moriguchi, S. Compara\cc\~ao entre TF-IDF e LSI para pesagem de termos em micro-blog.
Junior, S, Costa, V, Chen, SH, Guido, RU-Healthcare System for Pre-Diagnosis of Parkinson’s Disease from Voice Signal. In 2018 IEEE International Symposium on Multimedia (ISM) 2018 (pp. 271–274).
Costa, V, Mastelini, S, Carvalho, A, Barbon, SMaking Data Stream Classification Tree-Based Ensembles Lighter. In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS) 2018 (pp. 480–485).
Mastelini, S, Santana, E, Costa, V, Barbon, SBenchmarking Multi-target Regression Methods. In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS) 2018 (pp. 396–401).
Mantovani, R, Horváth, T, Cerri, R, Junior, S, Vanschoren, J, Carvalho, A, Ferreira, L. “An empirical study on hyperparameter tuning of decision trees”. arXiv preprint arXiv:1812.02207 2018.
Geronimo, B, Mastelini, S, Carvalho, R, J\’unior, S, Barbin, D, Shimokomaki, M, Ida, E. “Computer vision system and near-infrared spectroscopy for identification and classification of chicken with wooden breast, and physicochemical and technological characterization”. Infrared Physics & Technology 2019; 96:303–310.
Kato, T, Mastelini, S, Campos, G, Costa Barbon, A, Prudencio, S, Shimokomaki, M, Soares, A, Barbon, S. “White striping degree assessment using computer vision system and consumer acceptance test”. Asian-Australasian Journal of Animal Sciences 2018; 32(7):1015–1026.
Tavares, G, Costa, V, Martins, V, Ceravolo, P, Barbon Jr, SAnomaly detection in business process based on data stream mining. In Proceedings of the XIV Brazilian Symposium on Information Systems 2018 (pp. 1–8).
Silva, J, Santana, E, Mastelini, S, Barbon Jr, SStock Portfolio Prediction by Multi-Target Decision Support. In Proceedings of the XIV Brazilian Symposium on Information Systems 2018 (pp. 1–8).
Bezerra, V, Costa, V, Martins, R, Junior, S, Miani, R, Zarpelao, BProviding IoT host-based datasets for intrusion detection research∗. In Anais do XVIII Simp\’osio Brasileiro em Seguran\cca da Informa\cc\~ao e de Sistemas Computacionais 2018 (pp. 15–28).
Bezerra, V, Costa, V, Junior, S, Miani, R, Zarpelao, BOne-class Classification to Detect Botnets in IoT devices∗. In Anais do XVIII Simp\’osio Brasileiro em Seguran\cca da Informa\cc\~ao e de Sistemas Computacionais 2018 (pp. 43–56).
Nakano, F, Mastelini, S, Barbon, S, Cerri, RImproving Hierarchical Classification of Transposable Elements using Deep Neural Networks. In 2018 International Joint Conference on Neural Networks (IJCNN) 2018 (pp. 1–8).
Mastelini, S, Sasso, M, Campos, G, Schmiele, M, Clerici, M, Barbin, D, Barbon, S. “Computer vision system for characterization of pasta (noodle) composition”. Journal of Electronic Imaging 2018; 27(5):053021.
Almeida, A, Cerri, R, Paraiso, E, Mantovani, R, Junior, S. “Applying multi-label techniques in emotion identification of short texts”. Neurocomputing 2018; 320:35–46.
Barbon, S, Costa Barbon, A, Mantovani, R, Barbin, D. “Machine Learning Applied to Near-Infrared Spectra for Chicken Meat Classification”. Journal of Spectroscopy 2018; 2018.
Nolasco Perez, I, Badar\’o, A, Barbon Jr, S, Barbon, A, Pollonio, M, Barbin, D. “Classification of Chicken Parts Using a Portable Near-Infrared (NIR) Spectrophotometer and Machine Learning”. Applied spectroscopy 2018; 72(12):1774–1780.
Peres, L, Barbon Jr, S, Fuzyi, E, Barbon, A, Barbin, D, Saito, P, Andreo, N, Bridi, A. “Fuzzy approach for classification of pork into quality grades: coping with unclassifiable samples”. Computers and Electronics in Agriculture 2018; 150:455–464.
Santana, E, Geronimo, B, Mastelini, S, Carvalho, R, Barbin, D, Ida, E, Barbon, S. “Predicting poultry meat characteristics using an enhanced multi-target regression method”. Biosystems Engineering 2018; 171:193–204.
Costa, V, Leon Ferreira, A, Junior, S, others. “Strict Very Fast Decision Tree: a memory conservative algorithm for data stream mining”. Pattern Recognition Letters 2018; 116:22–28.
Mastelini, S, Costa, V, Santana, E, Nakano, F, Guido, R, Cerri, R, Barbon, S. “Multi-Output Tree Chaining: An Interpretative Modelling and Lightweight Multi-Target Approach”. Journal of Signal Processing Systems 2019; 91(2):191–215.
Costa, V, Zarpelao, B, Miani, R, Junior, SOnline detection of Botnets on Network Flows using Stream Mining. In Anais do XXXVI Simp\’osio Brasileiro de Redes de Computadores e Sistemas Distribu\’\idos 2018 .
Barbon J\’unior, S. Dynamic Time Warping baseado na transformada wavelet (Doctoral dissertation, Universidade de S\~ao Paulo).
Shirado, W, Moreira, M, Palma, J, Barbon Junior, S. “Comparative study between algorithms of discrete Fourier and Wavelet Transforms”. REVISTA BRASILEIRA DE COMPUTACAO APLICADA 2015; 7(3):97–107.
Barbon Jr, SToward a New Generation of Log Pre-processing Methods for Process Mining. In Business Process Management Forum undefined (pp. 55).
Barbon Junior, S, Tavares, G, Costa, V, Ceravolo, P, Damiani, EA Framework for Human-in-the-loop Monitoring of Concept-drift Detection in Event Log Stream. In Companion Proceedings of The Web Conference 2018 2018 (pp. 319–326).
Barbon, S, Campos, G, Tavares, G, Igawa, R, Guido, R. “Detection of Human, Legitimate Bot, and Malicious Bot in Online Social Networks Based on Wavelets”. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) 2018; 14(1s):26.
Nakano, F, Mastelini, S, Barbon, S, Cerri, RStacking methods for hierarchical classification. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) 2017 (pp. 289–296).
Mastelini, S, Santana, E, Cerri, R, Barbon, SDSTARS: a multi-target deep structure for tracking asynchronous regressor stack. In 2017 Brazilian Conference on Intelligent Systems (BRACIS) 2017 (pp. 19–24).
Junior, S, Tavares, G, Ceravolo, P, Damiani, EA Framework for Trace Clustering and Concept-drift Detection in Event Streams.. In SIMPDA 2017 (pp. 153–154).
Pereira, L, Barbon Jr, S, Valous, N, Barbin, D. “Predicting the ripening of papaya fruit with digital imaging and random forests”. Computers and Electronics in Agriculture 2018; 145:76–82.
Alvarenga, S, Barbon Jr, S, Miani, R, Cukier, M, Zarpel\~ao, B. “Process mining and hierarchical clustering to help intrusion alert visualization”. Computers & Security 2018; 73:474–491.
Costa Barbon, A, Barbon Jr, S, Campos, G, Seixas Jr, J, Peres, L, Mastelini, S, Andreo, N, Ulrici, A, Bridi, A. “Development of a flexible Computer Vision System for marbling classification”. Computers and Electronics in Agriculture 2017; 142:536–544.
Tavares, G, Mastelini, S, Barbon Jr, S. “User classification on online social networks by post frequency”. CEP 2017; 86057:970–977.
Pena, E, Carvalho, L, Barbon Jr, S, Rodrigues, J, Proen\cca Jr, M. “Anomaly detection using the correlational paraconsistent machine with digital signatures of network segment”. Information Sciences 2017; 420:313–328.
Santana, E, Mastelini, S, othersDeep regressor stacking for air ticket prices prediction. In Anais do XIII Simp\’osio Brasileiro de Sistemas de Informa\cc\~ao 2017 (pp. 25–31).
Ceravolo, P, Damiani, E, Torabi, M, Barbon, SToward a New Generation of Log Pre-processing Methods for Process Mining. In International Conference on Business Process Management 2017 (pp. 55–70).
Costa, V, Barbon, S, Miani, R, Rodrigues, J, Zarpel\~ao, BDetecting mobile botnets through machine learning and system calls analysis. In 2017 IEEE International Conference on Communications (ICC) 2017 (pp. 1–6).
Mastelini, S, Silva, M, Costa Barbon, A, Barbon Jr, SMarbling Grading Framework Applied on Meat Boutique Environment. In Anais do XII Simp\’osio Brasileiro de Sistemas de Informa\cc\~ao 2016 (pp. 542–549).
Almeida, A, Barbon Jr, S, Igawa, R, Paraiso, E, Moriguchi, S. “Opinion Mining: A Comparison of Hybrid Approaches”. no. c 2016:1–7.
Kummer, L, Binder, F, Barbon Jr, S, Nievola, J, Paraiso, E. “Predi\cc\~ao do Estágio de Nicho em Jogos RPG Massivos de Multijogadores utilizando o Comprometimento”. Encontro Nacional de Intelig\^encia Artificial e Computacional (ENIAC) 2016:289–300.
Barbon Jr, S, Barbon, A, Mantovani, R, Barbin, D. “Comparison of SVM and REPTree for classification of poultry quality”. Proceedings of the Modelling, Simulation and Identification/Intelligent Systems and Control–2016 (MSI 2016):840–039.
Fuzyi, E, Silva, M, Barbon Jr, SM-Health Solution on pre-diagnosis of larynx. In Proceedings of the annual conference on Brazilian Symposium on Information Systems: Information Systems: A Computer Socio-Technical Perspective-Volume 1 2015 (pp. 501–508).
Barbon Jr, S, Tavares, G, Kido, G. “Artificial and natural topic detection in online social networks”. iSys-Revista Brasileira de Sistemas de Informa\cc\~ao 2017; 10(1):80–98.
Campos, G, Barbon, S, Mantovani, RA meta-learning approach for recommendation of image segmentation algorithms. In 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) 2016 (pp. 370–377).
Kido, G, Igawa, R, Barbon Jr, STopic modeling based on louvain method in online social networks. In Anais do XII Simp\’osio Brasileiro de Sistemas de Informa\cc\~ao 2016 (pp. 353–360).
Barbon Jr, S. Dynamic time warping baseado na transformada wavelet. 2007. 113p (Doctoral dissertation, Disserta\ccao (Mestrado). Instituto de F\isica de Sao Carlos da Universidade de~…).
Kawakani, C, Barbon, S, Miani, R, Cukier, M, Zarpel\~ao, B. “Discovering attackers past behavior to generate online hyper-alerts”. iSys-Brazilian Journal of Information Systems 2017; 10(1):122–147.
Almeida, A, Barbon, S, Paraiso, EMulti-class Emotions classification by Sentic Levels as features in Sentiment Analysis. In 2016 5th Brazilian Conference on Intelligent Systems (BRACIS) 2016 (pp. 486–491).
Shirado, W, Abreu Moreira, M, Palma, J, J\’unior, S. “Estudo comparativo entre algoritmos das transformadas discretas de Fourier e Wavelet”. Revista Brasileira de Computa\cc\~ao Aplicada 2015; 7(3):97–107.
Barbon, S, Igawa, R, Zarpel\~ao, B. “Authorship verification applied to detection of compromised accounts on online social networks”. Multimedia Tools and Applications 2017; 76(3):3213–3233.
Barbon, A, Barbon Jr, S, Mantovani, R, Fuzyi, E, Peres, L, Bridi, A. “Storage time prediction of pork by Computational Intelligence”. Computers and Electronics in Agriculture 2016; 127:368–375.
Kawakani, C, Junior, S, Miani, R, Cukier, M, Zarpel\~ao, BIntrusion alert correlation to support security management. In Anais do XII Simp\’osio Brasileiro de Sistemas de Informa\cc\~ao 2016 (pp. 313–320).
Barbin, D, Mastelini, S, Barbon Jr, S, Campos, G, Barbon, A, Shimokomaki, M. “Digital image analyses as an alternative tool for chicken quality assessment”. Biosystems Engineering 2016; 144:85–93.
Igawa, R, Almeida, A, Zarpel\~ao, B, Barbon Jr, S. “Recognition on Online Social Network by user’s writing style”. iSys-Revista Brasileira de Sistemas de Informa\cc\~ao 2016; 8(3):64–85.
Campos, G, Igawa, R, Seixas, J, Almeida, A, Guido, R, Barbon, SSupervised approach for indication of contrast enhancement in application of image segmentation. In Eighth Int. Conf. on Advances in Multimedia 2016 (pp. 12–18).
Carvalho, L, Barbon Jr, S, Souza Mendes, L, Proenca Jr, M. “Unsupervised learning clustering and self-organized agents applied to help network management”. Expert Systems with Applications 2016; 54:29–47.
Guido, R, Barbon, S, Vieira, L, Sanchez, F, Maciel, C, Pereira, J, Scalassara, P, Fonseca, EIntroduction to the discrete shapelet transform and a new paradigm: Joint time-frequency-shape analysis. In 2008 IEEE International Symposium on Circuits and Systems 2008 (pp. 2893–2896).
Igawa, R, Almeida, A, Zarpelao, B, Barbon Jr, SRecognition of compromised accounts on twitter. In Proceedings of the annual conference on Brazilian symposium on information systems: information systems: a computer socio-technical perspective 2015 (pp. 9–14).
MORIGUCHI, S, BARBON JR, S, MURAKAMI, LBuilding relationship quality in electronic commerce. In Proceedings of the IAMOT 2015-24th International Association for Management of Technology Conference: Technology, Innovation and Management for Sustainable Growth 2015 (pp. 2131–2150).
Igawa, R, Barbon Jr, S, Paulo, K, Kido, G, Guido, R, J\’unior, M, Silva, I. “Account classification in online social networks with LBCA and wavelets”. Information Sciences 2016; 332:72–83.
Alvarenga, S, Zarpel\~ao, B, Junior, S, Miani, R, Cukier, MDiscovering attack strategies using process mining. In The Eleventh Advanced International Conference on Telecommunications 2015 (pp. 119–125).
Seixas, J, Barbon, S, Mantovani, RPattern recognition of lower member skin ulcers in medical images with machine learning algorithms. In 2015 IEEE 28th International Symposium on Computer-Based Medical Systems 2015 (pp. 50–53).
Seixas, J, Barbon, S, Siqueira, C, Dias, I, Castaldin, A, Felinto, AColor energy as a seed descriptor for image segmentation with region growing algorithms on skin wound images. In 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom) 2014 (pp. 387–392).
Fuzyi, E, Armani, A, Junior, S. “Modelagem de banco de dados para diagn\’ostico de transtornos mentais pela voz”. Journal of Health Informatics 2015; 7(1).
Pena, E, Carvalho, L, Barbon, S, Rodrigues, J, Proen\cca, MCorrelational paraconsistent machine for anomaly detection. In 2014 IEEE global communications conference 2014 (pp. 551–556).
Guido, R, Pereira, J, Fonseca, E, Maciel, C, Vieira, L, Guilerme, F, Barbon, SSupport vector machines and wavelets for voice disorder sorting. In 2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory 2006 (pp. 434–438).
Junior, S, Moriguchi, S, Souza, A. “Contribui\cc\~oes da Interface Usuário-Computador nos servi\ccos hospitalares”. Journal of Health Informatics 2013; 5(4).
Fantinato, P, Guido, R, Chen, SH, Santos, B, Vieira, L, J\’unior, S, Rodrigues, L, Sanchez, F, Souza, L, Maciel, C, othersA fractal-based approach for speech segmentation. In 2008 Tenth IEEE International Symposium on Multimedia 2008 (pp. 551–555).
Igawa, R, Kido, G, Seixas, J, Barbon, SAdaptive distribution of vocabulary frequencies: A novel estimation suitable for social media corpus. In 2014 Brazilian Conference on Intelligent Systems 2014 (pp. 282–287).
Pena, E, Barbon, S, Rodrigues, J, Lemes Proenca Junior, MAnomaly detection using digital signature of network segment with adaptive ARIMA model and Paraconsistent Logic. In Computers and Communication (ISCC), 2014 IEEE Symposium on 2014 (pp. 1–6).
Carvalho, L, Rodrigues, J, Barbon, S, Proen\cca, MUsing ant colony optimization metaheuristic and dynamic time warping for anomaly detection. In 2013 21st International Conference on Software, Telecommunications and Computer Networks-(SoftCOM 2013) 2013 (pp. 1–5).
Guido, R, Maciel, C, Monteiro, M, Fonseca, E, Panchapagesan, S, Pereira, J, Vieira, L, Junior, S, Guilherme, M, Sergio, K, othersA study on the best wavelet for audio compression. In 2006 Fortieth Asilomar Conference on Signals, Systems and Computers 2006 (pp. 2115–2118).
Rodrigues, L, Souza, T, Barbon Jr, S, Lucatto Jr, RGerenciamento de Prontuário Eletr\^onico de Pacientes em Cl\’\inica de Atendimento Fisioterápico do Centro Universitário do Norte Paulista. In XVIII Congresso Brasileiro de Informática em Sa\’ude 2006 .
Guido, R, Barbon Jr, S, Solgon, R, Paulo, K, Rodrigues, L, Da Silva, I, Escola, J. “Introducing the discriminative paraconsistent machine (dpm)”. Information Sciences 2013; 221:389–402.
Silva, R, Mazucato, S, Barbon Jr, SEstudo sobre os par\^ametros ac\’usticos relevantes para a verifica\ccao de patologias associadasa voz. In Anais do Congresso de Matemática Aplicada e Computacional-CMAC Sudeste undefined (pp. 282–285).
Barbon Jr, S, Guido, R, Vieira, L, Fonseca, E, Sanchez, F, Scalassara, P, Maciel, C, Pereira, J, Chen, SH. “Wavelet-based dynamic time warping”. Journal of Computational and Applied Mathematics 2009; 227(2):271–287
Saito, E, Rojas, G, Ricz, L, Junior, S. “Reconhecimento automático de Distonia Lar\’\ingea com base na sustenta\cc\~ao do Pitch”. Journal of Health Informatics 2014; 6(2).
Barbon J\’unior, S. Identifica\cc\~ao de patologias na laringe com base na Discriminative Paraconsistent Machine (DPM) (Doctoral dissertation, Universidade de S\~ao Paulo).
J\’unior, S, Carlos-SP-Brasil, S. Dynamic time warping baseado na transformada wavelet (Doctoral dissertation, Disserta\cc\~ao (Mestrado)—Instituto de F\’\isica de S\~ao Carlos-Universidade de~…).
Sanchez, F, J\’unior, S, Vieira, L, Guido, R, Fonseca, E, Scalassara, P, Maciel, C, Pereira, J, Chen, SH. “Wavelet-based cepstrum calculation”. Journal of Computational and Applied Mathematics 2009; 227(2):288–293.
J\’unior, S, Guido, R, Vieira, LA Neural-Network Approach for Speech Features Classification Based on Paraconsistent Logic. In 2009 11th IEEE International Symposium on Multimedia 2009 (pp. 567–570).
Guido, R, Chen, SH, Junior, S, Souza, L, Vieira, L, Rodrigues, L, Escola, J, Zulato, P, Lacerda, M, Ribeiro, JOn the Determination of Epsilon during Discriminative GMM Training. In 2010 IEEE International Symposium on Multimedia 2010 (pp. 362–364).
Guido, R, Vieira, L, J\’unior, S, Sanchez, F, Maciel, C, Fonseca, E, Pereira, J. “A neural-wavelet architecture for voice conversion”. Neurocomputing 2007; 71(1-3):174–180.
Guido, R, Vieira, L, Junior, S, Sanchez, F, Guilherme, M, Sergio, K, Scarpa, T, Fonseca, E, Pereira, J, Monteiro, MA Fractal and Wavelet-Based Approach for Audio Coding.. In Eighth IEEE International Symposium on Multimedia (ISM’06) 2006 (pp. 253–256).
Junior, S, Guido, R, Chen, SH, Vieira, L, Sanchez, F, Improved dynamic time warping based on the discrete wavelet transform. In Ninth IEEE International Symposium on Multimedia Workshops (ISMW 2007) 2007 (pp. 256–263).
Guido, R, Junior, S, Vieira, L, Sanchez, F, Maciel, C, Scalassara, P, Pereira, J, Puia, V. “Spoken document summarization based on dynamic time warping and wavelets”. International Journal of Semantic Computing 2007; 1(03):347–357.
Scalassara, P, Maciel, C, Guido, R, Pereira, J, Fonseca, E, Montagnoli, A, J\’unior, S, Vieira, L, Sanchez, F. “Autoregressive decomposition and pole tracking applied to vocal fold nodule signals”. Pattern recognition letters 2007; 28(11):1360–1367.